141 research outputs found

    An Electrostatics Problem on the Sphere Arising from a Nearby Point Charge

    Full text link
    For a positively charged insulated d-dimensional sphere we investigate how the distribution of this charge is affected by proximity to a nearby positive or negative point charge when the system is governed by a Riesz s-potential 1/r^s, s>0, where r denotes Euclidean distance between point charges. Of particular interest are those distances from the point charge to the sphere for which the equilibrium charge distribution is no longer supported on the whole of the sphere (i.e. spherical caps of negative charge appear). Arising from this problem attributed to A. A. Gonchar are sequences of polynomials of a complex variable that have some fascinating properties regarding their zeros.Comment: 44 pages, 9 figure

    Riesz external field problems on the hypersphere and optimal point separation

    Full text link
    We consider the minimal energy problem on the unit sphere Sd\mathbb{S}^d in the Euclidean space Rd+1\mathbb{R}^{d+1} in the presence of an external field QQ, where the energy arises from the Riesz potential 1/rs1/r^s (where rr is the Euclidean distance and ss is the Riesz parameter) or the logarithmic potential log⁑(1/r)\log(1/r). Characterization theorems of Frostman-type for the associated extremal measure, previously obtained by the last two authors, are extended to the range dβˆ’2≀s<dβˆ’1.d-2 \leq s < d - 1. The proof uses a maximum principle for measures supported on Sd\mathbb{S}^d. When QQ is the Riesz ss-potential of a signed measure and dβˆ’2≀s<dd-2 \leq s <d, our results lead to explicit point-separation estimates for (Q,s)(Q,s)-Fekete points, which are nn-point configurations minimizing the Riesz ss-energy on Sd\mathbb{S}^d with external field QQ. In the hyper-singular case s>ds > d, the short-range pair-interaction enforces well-separation even in the presence of more general external fields. As a further application, we determine the extremal and signed equilibria when the external field is due to a negative point charge outside a positively charged isolated sphere. Moreover, we provide a rigorous analysis of the three point external field problem and numerical results for the four point problem.Comment: 35 pages, 4 figure

    Minimum Riesz energy problems for a condenser with "touching plates"

    Full text link
    Minimum Riesz energy problems in the presence of an external field are analyzed for a condenser with touching plates. We obtain sufficient and/or necessary conditions for the solvability of these problems in both the unconstrained and the constrained settings, investigate the properties of minimizers, and prove their uniqueness. Furthermore, characterization theorems in terms of variational inequalities for the weighted potentials are established. The results obtained are illustrated by several examples.Comment: 32 pages, 1 figur

    Log-optimal (d+2)-configurations in d-dimensions

    Get PDF
    We enumerate and classify all stationary logarithmic configurations of d+2 points on the unit (d-1)-sphere in d-dimensions. In particular, we show that the logarithmic energy attains its relative minima at configurations that consist of two orthogonal to each other regular simplexes of cardinality m and n. The global minimum occurs when m=n if d is even and m=n+1 otherwise. This characterizes a new class of configurations that minimize the logarithmic energy on the (d-1)-sphere for all d. The other two classes known in the literature, the regular simplex and the cross polytope, are both universally optimal configurations.Comment: 17 page
    • …
    corecore